Иоганн кеплер краткая биография и его открытия. Иоганн кеплер - непростая судьба таланта. Комета - предвестье великой судьбы

Появление гелиоцентрической системы Николая Коперника - важнейшая составляющая того процесса, который получил у историков название научной революции XVI-XVII веков. В предисловии к свой книге, где он изложил эту теорию, великий поляк осторожно указывал на её нелепость, предлагая считать свой труд лишь попыткой найти способ облегчить математические расчеты в астрономии.

Заслуга превращения коперниковской модели мироздания в принадлежит великому немецкому ученому по фамилии Кеплер. Иоганн в числе других великих современников сделал больше: он возвестил о приходе в мир человека нового типа - ученого, активно познающего природу.

Комета - предвестье великой судьбы

Будущий астроном, математик, механик, оптик родился 27 декабря 1571 года в небогатой семье, в городке Вайль, в герцогстве Вюртемберг, в швабской части Германии. Когда ему исполнилось 5 лет, ушел на войну в Голландию глава семьи - солдат-наёмник Генрих Кеплер. Иоганн больше никогда его не видел. Его мать, Катарина, была дочерью трактирщика, занималась траволечением и гаданием, за что позднее едва не поплатилась головой. Имея небольшой доход, она сделала всё, чтобы сын получил достойное образование.

Интересный факт, может быть, определивший всю судьбу, содержит биография Иоганна Кеплера в самом её начале. Катарина Кеплер показала шестилетнему Иоганну комету, а через три года - в 1580 году - затмение Луны. Звезда, которая движется по ночному небу, и Луна, на глазах меняющая форму, произвели на любознательного мальчика сильное впечатление. Может, тогда родилось его желание докапываться до причин происходящего?

Ученый-богослов, сторонник Коперника

В раннем детстве Иоганн перенес заболевание оспой, ослабившее ему зрение. Поэтому он рос физически слабым и болезненным. Из-за этого ему потребовалось больше времени, чем сверстникам, чтобы получить среднее образование. При этом поступлению Кеплера в университет Тюбингена способствовали городские власти, отмечавшие выдающиеся способности, которыми обладал Иоганн Кеплер. Краткая биография ученого с 1591 по 1594 год представляет собой напряженное впитывание знаний в одном из лучших европейских университетов.

Кеплер всю жизнь был глубоко верующим человеком и убежденным протестантом. Поэтому он готовился стать священником и поступил на теологический факультет. Правда, перед этим он прослушал курс математики и астрономии, став магистром искусств - именно так именовались эти в то время. Среди его преподавателей был сторонник гелиоцентрической системы Михаэль Мёстлин. Под влиянием его лекций убежденным проповедником этой теории становится и Кеплер. Иоганн пытался творчески осмыслить идеи Коперника, но не всегда делал верные выводы.

Кубок Кеплера

Планам Иоганна стать священником помешало приглашение его на должность преподавателя математики в университет города Грац (1594). Хотя убежденность его в приверженности пути служения богу была полная, биография Иоганна Кеплера становится биографией ученого-исследователя, стоящего на платформе учения, отрицавшего Птолемеевскую (геостационарную) модель мира.

В Гарце он занимается поиском математической гармонии в устройстве Солнечной системы и публикует книгу «Тайна мироздания» (1596). Визуальным выражением идей, провозглашенных ученым в этой книге, стал «кубок Кеплера». Это была объемная в которой светило по-коперниковски располагается в центре, но орбиты планет, вращающихся вокруг, Кеплер наделяет свойствами платоновских тел - кубов, шаров и правильных многогранников. Не зря математика считалась в то время искусством - эта модель была очень красива, хотя и абсолютно неверна.

Вовремя сделанное приглашение

Свою книгу Кеплер посылает самым передовым ученым Европы, в том числе Галилею и датчанину Тихо Браге, занимавшему пост придворного астронома в Праге. Отрицая предложенную Кеплером гармонию орбитальных форм, оба ученых высоко оценивают работу молодого математика и астронома. Правда, с разных позиций. Галилей одобрил гелиоцентрический подход, а Браге понравились смелость и оригинальность его мышления. Датчанин пригласил Кеплера в Прагу.

Отъезду Иоганна в Прагу способствовали несколько обстоятельств. Среди них - трудное материальное и моральное положение Кеплера (он женился, но молодая жена заболела эпилепсией и скоро погибла) и начавшееся преследование протестантов со стороны католической церкви, которой был объявлен вероотступником и Иоганн Кеплер. Краткая биография ученого в последний период его пребывания в Гарце полна угроз и давления на него как на сторонника еретических теорий.

В Кеплер прибывает в Прагу, где начинается самый плодотворный этап его жизни.

Кеплер в Праге. Наследие

Вскоре после начала совместной работы Браге неожиданно скончался, оставив Кеплеру архивы своих и место придворного астронома и астролога. Десятилетие, проведенное Кеплером в Праге, лежит в основе всех главных его научных достижений, сделанных в астрономии, физике, математике.

В астрономии Кеплер навел окончательный порядок с представлением о движении планет Солнечной системы. Понять, какое открытие принадлежит Иоганну Кеплеру, его современники могли из главной книги ученого - «Новая астрономия» (1609). В ней и в завершающем труде «Гармония мира» (1618) были сформулированы три закона небесной кинематики. Первый говорил о форме орбиты планет в виде эллипса с Солнцем в одном из фокусов, второй и третий описывал скорость движения планеты по орбите и способы её измерения. Кроме того, Кеплер описал составил точные астрономические таблицы, служившие для ориентации по звездам морякам и астрономам.

Математика была основным инструментом, который использовал в своей работе Кеплер. Иоганн в книге «Новая стереометрия винных бочек» (1615) показывает способы нахождения объема для тел вращения, закладывает основы матанализа и интегрального исчисления. Среди математических находок Кеплера - таблица логарифмов, новые понятия - "среднее арифметическое" и "бесконечно удаленная точка".

Кеплер ввел в научный обиход понятие "инерция", говоря о существовании в природе стремления родственных тел к единению, вплотную подошел к открытию закона всемирного тяготения. Впервые объяснил причину морских приливов и отливов воздействием Луны, описал причины близорукости, разработал более совершенный телескоп.

Последние годы. Память

В 1615 году Кеплер был вынужден стать адвокатом своей матери, обвиненной в колдовстве. Ей грозило сожжение на костре, но Иоганну удалось добиться её освобождения.

Последние годы Кеплер вынужден был проводить в поисках надежного источника для обеспечения своей семьи, и во время поездки к императору, задолжавшему ему жалование, в городе Ригенсбург в 1630 году он скончался.

Имя Кеплера сегодня - в ряду величайших умов, чьи идеи лежат в основе и нынешних научных, и технических достижений. Его именем названы астероид, кратер на Луне, космический грузовик и орбитальная космическая обсерватория, с помощью которой открыта новая планета, похожая по условиям на Землю и также названная именем Кеплера.

оказал великие услуги астрономии не одними своими бессмертными законами, плодом глубоких, гениальных соображений и труда упорного, постоянного, преодолевшего все препятствия. Если бы в его сочинениях великие идеи не были смешаны с идеями систематическими, которые он заимствовал из современной ему философии; то его предложения были бы оценены гораздо вернее, нежели как то, что наука без предложений не может двигаться вперед; без предложений нельзя придумать ни одного полезного опыта; надобно только быть добросовестным и только после опытов и вычислений, подтвердивших предложение, допускать его в науку.

Кеплер, сколько мог, был верен этому правилу; без колебания и упрямства отказывался он от своих самых любимых гипотез, если они уничтожались опытом.

Кеплер жил всегда в бедности, и поэтому принужден был работать для книгопродавцев, которые требовали от него почти ежедневных новостей; он не имел времени обдумывать свои мысли; он излагал их такими, какими рождались в его уме; он думал вслух. Много ли найдется мудрецов которые перенесли такую пытку?

Хотя в многочисленных сочинениях Кеплера находим и такие идеи, которые нельзя оправдать его стесненными обстоятельствами, однако мы не можем не быть к нему снисходительными, если вполне поймем тяжелую его жизнь и примем во внимание бедствия его семейства.

Такое мнение о причинах многих парадоксов Кеплера мы извлекли из сочинений Брейшверта, рассмотревшего в 1831 г. неизданные сочинения великого астронома, закончившего преобразования древней астрономии.

Иоганн Кеплер родился 27 декабря 1571 г. в Магштадте, в Вир-тембергском селе, находившемся в одной мили от императорского города Вейля (в Швабии). Он родился недоношенным и весьма слабым. Его отец, Генрих Кеплер, был сыном бургомистра этого города; его бедное семейство причисляло себя к дворянству; потому что один из Кеплеров был сделан рыцарем, при императоре Сигизмунде. Его мать, Катерина Гульденман, дочь трактирщика, была женщина без всякого образования; она не умела ни читать, ни писать, и провела свое детство у тетки, которую сожгли за колдовство.

Отец Кеплера был солдатом, сражавшимся против Бельгии под командованием герцога Альбы.

В шесть лет Кеплер перенес тяжелую оспу; едва он избавился от смерти, как в 1577 г. его послали в леонбергскую школу; но отец его, возвратившись из армии, нашел свое семейство совершенно разоренным одним банкротом, за которого оно имело неосторожность поручиться; тогда он открыл в Эмердингере кабак, взял сына из школы и заставил его прислуживать посетителям своего заведения. Эту должность исправлял Кеплер до двенадцатилетнего возраста.

И так тот, кому суждено было прославить и свое имя и свое отечество, начал жизнь в качестве кабацкого прислужника.

В тринадцать лет Кеплер опять сильно заболел и родители не надеялись на его выздоровление.

Между тем дела отца его шли худо, и потому он опять вступил в австрийскую армию, которая шла против Турции. С этого времени отец Кеплера пропал без вести; а мать его, женщина грубая и сварливая, истратила и последнее имущество семейства, доходившее до 4 тысяч флоринов.

Иоганн Кеплер имел двух братьев, походивших на свою мать; один был оловянщик, другой — солдат, и оба были совершенные негодяи. Таким образом, будущий астроном ничего не находил в своем семействе, кроме жгучего горя, которое совсем его уничтожило, если бы не утешала его сестра Маргарита, вышедшая замуж за протестантского пастора; но и этот родственник впоследствии сделался его врагом.

Когда отец Кеплера ушел из армии, тогда его заставили работать в поле; но слабый и тощий юноша не мог переносить тяжелых трудов; его назначили в богословы, и в восемнадцать лет (1589) поступил он в тюбингемскую семинарию и содержался там на казенный счет. При экзамене на степень бакалавра его не признали отличнейшим; этот титул достался Джону-Ипполиту Бренциусу, имя которого не найдете ни в одном историческом словаре, хотя издатели таких сборников весьма снисходительны и помещают в них всякий хлам. Впрочем в наших биографиях не раз встретимся с такими случаями, доказывающими нелепость школьного педантизма.

Кеплер потерпел неудачу не одной этой причине: еще сидя на школьной скамье, он принимал деятельное участие в протестантских теологических спорах, и т. к. его мнения были противны Виртемберг-скому правоверию, то решили, что он не достоин повышения в духовном звании.

К счастью Кеплера, Местлин, вызванный (1584) из Гейдельберга в Тюбинген на кафедру математики, сообщил его уму другое направление. Кеплер оставил теологию, но не совсем освободился от мистицизма, укорененного в нем первоначальным воспитанием. В это время Кеплер в первый раз увидел бессмертную книгу Коперника.

«Когда я, — говорит Кеплер, — оценил прелести философии, тогда я с жаром занялся всеми ее частями; но не обращал особого внимания на астрономию, хотя хорошо понимал все, что преподавалось из нее в школе. Я был воспитан на счет герцога Виртембергского, и видя, что мои товарищи вступают в его службу не совсем по их склонностям, я также решил принять первую предложенную мне должность».

Ему предложили должность профессора математики.

В 1593 г. двадцатидвухлетний Кеплер был определен профессором математики и нравственной философии в Греце. Он начал тем, что издал календарь по Григорианскому преобразованию.

В 1600г. в Штирии начались религиозные гонения; все профессора протестанты были выгнаны из Греца, в том числе и Кеплер, хотя он уже как бы был постоянным гражданином этого города, женившись (1597) на благородной и прекрасной женщине, Варваре Мюллер. Кеплер был третьим мужем, и выходя за него, она требовала свидетельства его благородства: Кеплер ездил хлопотать о том в Виртемберг. Брак был несчастливым.

После исторических подробностей открытия новой звезды в Змееносце и теоретических соображений об ее сверкании, Кеплер разбирает наблюдения, произведенные в различных местах, и доказывает, что звезда не имела ни собственного движения, ни годичного параллакса.

Хотя в книге своей Кеплер, по-видимому, оказывает презрение к астрологии. Однако после длинного опровержения критики Пик де ла Мирандоля, он допускает влияние планет на Землю, когда они бывают расположены между собой определенным образом. Между прочим, нельзя читать без удивления, что Меркурий может производить бури.

Тихо утверждал, что звезда 1572 г. образовалась из вещества млечного пути; звезда 1604 г. находилась так же близ этого светлого пояса; но Кеплер не считал возможным такое образование звезд, потому что со времен Птолемея млечный путь нимало не переменился. Но каким образом он уверился в неизменяемости млечного пути? — «Впрочем, — говорит Кеплер, — появление новой звезды уничтожает мнение Аристотеля, будто бы небо не может портиться».

Кеплер рассматривает, не имело ли появление новой звезды какого-нибудь соотношения с соединением планет, бывшим поблизости к ее месту? Но, будучи не в состоянии найти физическую причину образования звезды, он заключает: «Бог, беспрестанно пекущийся о мире, может повелеть появиться новому светилу в любом месте и в любое время».

В Германии была пословица: новая звезда — новый король. «Удивительно, — говорит Кеплер, — что ни один честолюбец не воспользовался народным предрассудком».

Касательно рассуждения Кеплера о новой звезде в Лебеде заметим, что автор употребил всю свою ученость для доказательства, что звезда действительно явилась вновь и не принадлежит к числу звезд переменных.

Тут же Кеплер доказывает, что время Рождества Христова определено не точно и что начало этой эры надо отодвинуть назад на четыре или на пять лет, так что 1606 г. надо считать или 1610 или 1611 годом.

Astronomia nova sive physica caelestis, tradita commetaris de motibus stellae Martis ex observationibus Tycho Brahe. — Прага , 1609 г .

В первых своих исследованиях для усовершенствования Рудолъфо-вых таблиц Кеплер не осмеливался еще отвергнуть эксцентрики и эпициклы Альмагеста, принимаемые также Коперником и Тихо, по причинам, заимствованным от метафизики и физики; он только утверждал, что соединения планет надо относить к истинному, а не к среднему Солнцу. Но чрезвычайно трудные и многолетние вычисления не удовлетворяли его: разности между вычислениями и наблюдения простирались до 5 и 6 минут градуса; от этих-то разностей он хотел освободиться и наконец открыл истинную систему мира. Тогда Кеплер решительно от движения планет по кругам около эксцентра, т. е. около точки воображаемой, невещественной. Вместе с такими кругами уничтожились и эпициклы. Он предположил, что Солнце есть центр движения планет, совершающихся по эллипсу, в одном из фокусов которого находится этот центр. Чтобы возвести такое предположение на степень теории, Кеплер произвел вычисления, удивительные по своей трудности и по своей продолжительности. Он показал беспримерно неутомимое постоянство в труде и непреодолимое упорство в достижении предложенной цели.

Такая работа была награждена тем, что вычисления, относительно Марса, основанные на его предположении, привели к выводам, совершенно согласным с наблюдениями Тихо.

Теория Кеплера состоит из двух положений: 1) планета обращается по эллипсу, в одном из фокусов которого находится центр Солнца, и 2) планета двигается с такой скоростью, что радиусы-векторы описывают площади вырезок, пропорциональные временам движения. Из многочисленных наблюдений в Уранибурге Кеплер должен был выбрать наиспособнейшие для решения вопросов, соединенных с главной задачей и изобрести новые способы вычисления. Посредством такого благоразумного выбора, без всякого предположения, он доказал, что линии, в которых плоскости орбит всех планет пересекают эклиптику, проходят через центр Солнца и что эти плоскости наклонены к эклиптике почти под постоянными углами.

Мы заметили уже, что Кеплер производил вычисления чрезвычайно продолжительные и чрезвычайно обременительные, потому что в его время не знали еще логарифмов. Об этом предмете в «Истории астрономии» Бальи находим следующую статистическую оценку Кеп-лерова труда: «Усилия Кеплера невероятны. Каждое его вычисление занимает 10 страниц в листе; каждое вычисление он повторял по 70 раз; 70 повторений дают 700 страниц. Вычисляющие знают, сколько можно сделать ошибок и сколько раз надо было проделывать вычисления, занимающие 700 страниц: сколько же надо было употребить времени? Кеплер был человеком удивительным; он не испугался такого труда и труд не утомил умственных и физических его сил».

К этому надо прибавить, что Кеплер понимал огромность своего предприятия в самом его начале. Он рассказывает, что Ретик, отличный ученик Коперника, желал преобразовать астрономию; но никак не мог объяснить движения Марса. «Ретик, — продолжает Кеплер, — призвал на помощь своего домашнего гения, но гений, вероятно, рассердившись за нарушение своего покоя, схватил астронома за волосы, поднял его к потолку и, опустив на пол, сказал: вот движение Марса».

Эта шутка Кеплера доказывает всю трудность задачи, и поэтому можно судить об его удовольствии, когда он уверился, что планеты действительно обращаются по выше упомянутым двум законам. Удовольствие свое Кеплер выразил в словах, обращенных к памяти несчастного Рамюса.

Если бы Земля и Луна, в предположении, что они одинаково плотны, не были удерживаемы в своих орбитах животною или какой-нибудь другой силой: то Земля приблизилась к Луне на 54-ю часть разделяющего их расстояния, а луна прошла бы остальные 53 части и они соединились бы.

Если бы Земля перестала притягивать свои воды, то все моря поднялись бы и соединились бы с Луной. Если притягательная сила Луны простирается до Земли, то, обратно, такая же сила Земли достигает Луны и распространяется далее. И так все подобное Земле не может не подлежать ее притягательной силе.

Нет вещества абсолютно легкого; одно тело легче другого, потому что одно тело реже другого. «Я, — говорит Кеплер, — называю редким то тело, которое, при данном объеме, имеет мало вещества».

Не надо воображать, что легкие тела поднимаются и не притягиваются: они притягиваются менее тел тяжелых и тяжелые тела их вытесняют.

Движущая сила планет находится в Солнце и слабеет с увеличением расстояния от этого светила.

Когда Кеплер допустил, что Солнце есть причина обращения планет, тогда он должен был допустить, что оно обращается на своей оси по направлению поступательного движения планет. Это следствие теории Кеплера доказано впоследствии солнечными пятнами; но к теории своей Кеплер прибавил обстоятельства, которые не оправдались наблюдениями.

Dioptrica, и пр. — Франкфурт, 1611 г.; перепечатана в Лондоне 1653 г.

Кажется, чтобы написать диоптрику, надо было знать закон, по которому происходит преломление света, когда он переходит из редкого вещества (среды) в плотное, — закон, открытый Декартом ; по как при малых углах падения, углы преломления, почти пропорциональны первым: то Кеплер, в основании своих исследований, принял эти приблизительные отношения и изучил свойства плоско-сферических стекол, а так же сферических, поверхности которых имеют равные радиусы. Здесь-то находим формулы для вычисления расстояний фокусом упомянутых стекол. Эти формулы до сих пор употребляются.

В той же книге находим, что он первый дал понятие о подзорных трубах из двух выпуклых стекол. Галилей всегда употреблял трубы, составленные из одного стекла выпуклого и другого, глазного, вогнутого. И так с Кеплера надо начинать историю астрономических труб, единственно способных для снарядов с делениями, предназначенными для измерения углов. Что же касается правила, определяющего увеличение подзорной трубы и состоящего в разделении расстояния фокуса предметного стекла на расстояние фокуса стекла глазного, то оно открыто не Кеплером, но Гюйгенсом.

Кеплер, составляя свою диоптрику, знал уже, что Галилей открыл юпитеровы спутники: из кратковременных их обращений он заключил, что планета должна также обращаться на своей оси, притом — менее, нежели в 24 часа. Это заключения оправдалось не скоро после Кеплера.

Nova stereometria doliorum vinariorum. — Линц, 1615 г.

Эта книга есть чисто геометрическая; в ней автор рассматривает особенно тела, происходящие от вращения эллипса около различных его осей. В ней так же предложен способ для измерения вместимости бочек.

<>bHarmonicces mundi libri quinque, и пр. — Линц, 1619 г.

Здесь Кеплер отдает отчет об открытии третьего своего закона, именно: квадраты времен вращений планет пропорциональны кубам их расстояний от Солнца.

18 марта 1618 г. вздумал он сравнить квадраты времен вращений с кубами расстояний: но, по ошибке вычисления, он нашел, что закон неверен; 15 мая он вновь переделал вычисления, и закон оправдался. Но и тут Кеплер сомневался в нем, потому что во втором вычислении также могла быть ошибка. «Однако же, — говорит Кеплер, — после всех проверок я убедился, что закон совершенно согласен с наблюдениями Тихо. И так открытие не подлежит сомнению».

К удивлению, к этому великому открытию Кеплер примешал множество странных и совершенно ложных идей. Открытый им закон увлек его воображение к пифагоровым гармониям.

«В музыке тел небесных, — говорит Кеплер, — Сатурн и Юпитер соответствуют басу, Марс — тенору, Земля и Венера — контральто, а Меркурий — фальцету».

То же великое открытие обезображено верою Кеплера в астрологические бредни. Например, он утверждал, что соединения планет всегда возмущает нашу атмосферу и проч.

De cometis libelli tres, и пр . — Аугсбург , 1619 г .

Прочитав три главы этого сочинения, нельзя не удивиться, что Кеплер, открывший законы движения планет около Солнца, утверждал, что кометы двигаются по прямым линиям. «Наблюдения над течением этих светил — говорит он — не заслуживают внимания, потому что они не возвращаются». Такое заключение удивительно потому, что оно относится к комете 1607 г., которая являлась тогда в третий раз. А еще удивительнее то, что из неверного предположения он вывел верные следствия об огромном расстоянии кометы от Земли.

«Вода, особенно соленая, производит рыбы; эфир производит кометы. Творец не хотел, чтобы неизмеримые моря были без жителей; Он хотел также населить и небесное пространство. Число комет должно быть чрезвычайно большое; мы не видим много комет потому, что они не приближаются к Земле и весьма скоро уничтожаются».

Возле таких бредней заблуждавшегося воображения Кеплера находим идеи, вошедшие в науку. Например, солнечные лучи, проникая в кометы постоянно отрывают от них частицы их вещества и образуют их хвосты.

По свидетельству Эфора, Сенека, упомянув о комете, разделившейся на две части, которые приняли различные пути, считал это наблюдение совершенно ложным. Кеплер сильно осуждал римского философа. Едва ли не справедлива строгость Кеплера, хотя почти все астрономы на стороне Сенеки: в наше время астрономы были свидетелями подобного события в небесном пространстве; они видели две части одной кометы, принявшие различные пути. Никогда не надо пренебрегать предвидениями или гаданиями гениальных людей.

Книга о кометах издана в 1619 г., т. е. после великих открытий Кеплера; но ее последняя глава особенно наполнена астрологическими бреднями о влиянии комет на события подлунного мира, от которого они находятся в больших расстояниях. Говорю: в расстояниях, потому что комета может произвести болезни, даже чуму, когда ее хвост покроет Землю, ибо кто знает сущность вещества комет?

Epitome astronomiae copernicanae, и пр .

Это сочинение состоит из двух томов, выходивших в Аенце в различные годы: 1618, 1621 и 1622. В них содержатся следующие открытия, распространившие область науки:

Солнце есть неподвижная звезда; оно кажется нам более всех прочих звезд, потому что ближе всех к Земле.

Известно, что Солнце вращается на своей оси (показали это наблюдения над пятнами); следственно так же должны вращаться и планеты.

Кометы составлены из вещества, способного расширяться и сжиматься, — из вещества, которое солнечные лучи могут уносить на большие расстояния.

Радиус сферы звезд по крайней мере в две тысячи раз более расстояния Сатурна.

Солнечные пятна суть облака или густой дым, поднимающийся из недр Солнца и сгорающий на его поверхности.

Солнце вращается, и поэтому его притягательная сила направлена в различные стороны неба: когда Солнце овладеет какой-нибудь планетой, тогда заставит ее вращаться вместе с собою.

Центр движения планет находится в центре Солнца.

Свет, которым Луна окружается во время полных солнечных затмений, принадлежит атмосфере Солнца. Кроме того, Кеплер думал, что эта атмосфера иногда бывает видима после захождения Солнца. По этому замечанию можно подумать, что Кеплер первый открыл зодиакальный свет; но он ничего не говорит о форме света; следовательно, мы не имеем права Д. Кассини и Шальдрея лишать чести их открытий.

Jo. Kepleri tabulae Rudolphinae, и пр. — Ульм, 1627 г.

Эти таблицы начал Тихо, а кончил Кеплер, потрудившись над ними 26 лет. Название свое они получили от имени императора Рудольфа, который был покровителем обоих астрономов, но не давал им обещанного жалования.

В той же книге содержится история открытия логарифмов, которое однако же нельзя отнять от Непера, первого их изобретателя. Право изобретения принадлежит тому, кто первый выпустил его в свет.

Прусские таблицы, так названные потому, что посвящены Ал-берту Брандебургскому, герцогу Пруссии, были изданы Рейнгольдом в 1551 г. О ни основывались на наблюдениях Птолемея и Коперника . По сравнению с «таблицами рудольфовыми», составленными по наблюдениям Тихо и по новой теории, в рейнгольдовых таблицах ошибки простираются до многих градусов.

В этом посмертном сочинение Кеплера, изданном его сыном в 1634 г., содержится описание астрономических явлений для наблюдателя, находящегося на Луне. Некоторые сочинители астрономических учебников так же занимались подобными описаниями, перенося наблюдателей на разные планеты. Такие описания полезны для начинающих, и справедливость требует сказать, что Кеплер первый открыл к тому дорогу.

Вот названия других сочинений Кеплера, показывающих, какую трудолюбивую жизнь вел великий астроном:

Nova dissertatiuncula de fundamentis astrologiae certioribus, и пр. — Прага, 1602 г.
Epistola ad rerum coelestium amatores universos, и пр. — Прага, 1605 г.
Sylva chronologica. — Франкфурт, 1606 г.
Подробная история новой кометы 1607, и пр. На немецком; в Галле, 1608 г.
Phoenomenon singulare, seu Mercurius in Sole, и пр. Лейпциг, 1609 г.
Dissertatio cum Nuncio sidereo nuper ad mortales misso a Galileo. — Прага, 1610 г.; в том же году была перепечатана во Флоренции, и в 1611 г. во Франкфурте.
Narration de observatis a se quatuor Jovis satellitibus erronibus quos Galilaeus medica sidera nuncupavit. Прага, 1610 г.
Jo. Kepleri strena, seu de nive sexangula. Франкфурт, 1611 г.
Kepleri eclogae chronicae ex epistolis doctissimorum aliquot virorum et suis mutuis. Франкфурт, 1615 г.
Ephtmerides novae, и пр. — кеплеровы эфемериды издавались до 1628 г. и всегда на год вперед; но печатались по истечении года. После Кеплера, их продолжил Барчий, зять Кеплера. Известия о несчастьях для правительства и церквей, особенно о кометах и землетрясениях в 1618 и 1619 г. На немецком, 1619 г.
Затмения 1620 и 1621 г. на немецком, в Ульме, 1621 г.
Kepleri apologia pro suo opere Harmonices mundi, и пр. Франкфурт, 1622 г.
Discursus conjuctionis Saturni et Joves in Leone. Линц, 1623 г.
Jo. Kepleri chilias logarithmorum. Марбург, 1624 г.
Jo. Kepleri hyperaspistes Tychonis contra anti-Tychonem Scipionis Claramonti, и пр. Фракфурт, 1625 г.
Jo. Kepleri supplementum chiliadis logaritmorum. Acnypr, 1625 r.
Admonitio ad astronomos rerumque coelestium studiosos de miris rarisque anni 1631 phoenomenis, Veneris puta et Mercurii in Solem incursu. Лейпциг, 1629 г.
Responsio ad epistolum jac. Bartschii praefixam ephemeridi anni 1629, и пр. Саган, 1629.
Sportula genethliacis missa de Tab. Rudolphi usu in computationibus astrologicis, cum modo dirigendi novo et naturali. Саган, 1529 г.

Ганш в 1718 г. издал один том, содержащий в себе часть рукописей, оставшихся после Кеплера; обещанный им второй том не вышел, по недостатку средств. Еще восемнадцать тетрадей неизданных рукописей были куплены Императорской С. Петербургской академией наук в 1775 г.

Было сильное поэтическое воображение, как мы видим по гипотезам, которые делает он в своих великих астрономических творениях. Но он отличал свои предположения от открытых им положительных истин. Нет ни одного отдела тогдашних математических наук, которого он не продвинул бы вперед. Кеплер с любовью принимал всякое открытие, всякую новую дельную мысль других ученых, и превосходно умел отделять истину от ошибок. Он правильно оценил всю важность логарифмов, изобретенных в начале XVII века шотландским математиком лордом Непиром. Он понял, что при их помощи легко делать вычисления, которые без них были трудны по своей многосложности; потому сделал новое издание логарифмов с объяснительным вступлением; благодаря тому логарифмы быстро вошли во всеобщее употребление. В геометрии Кеплер сделал открытия, подвинувшие ее много вперед. Он выработал понятия и методы, которыми разрешались многие задачи, неразрешимые до него, и был проложен путь к открытию дифференциального исчисления. Он увидел надобность исследовать некоторые вопросы оптики для очищения астрономических наблюдений от неточности, вводимой в них преломлением лучей света в атмосфере, и для разъяснения законов действия изобретенного тогда телескопа. Кеплер дал решения этих вопросов в оптической части своего астрономического трактата и в «Диоптрике». Он открыл истинный ход процесса зрения нашего глаза. Он положил правильное основание теории действия телескопа. Ему не удалось найти точный закон преломления лучей, но он нашел понятие о нем, настолько близкое к истине, что оно было достаточно для разъяснения действия оптических инструментов. Опираясь на эти исследования, Иоганн Кеплер предложил новое устройство телескопа, которое должно было, по его соображениям, быть самым лучшим для астрономических наблюдений. Телескоп этого устройства, называемый Кеплеровым, оставался в употреблении до начала XX века. (Изобретение телескопа было, по всей вероятности, результатом случайности; рассказы о нем различны, но все сходятся в том, что оно было сделано в Миддельбурге, в Голландии. Галилей первым применил телескоп к астрономическим наблюдениям, но законы действия этого инструмента стали понятны только благодаря исследованиям Кеплера.)

Портрет Иоганна Кеплера, 1610

Законы Кеплера

Величайшее из бессмертных открытий этого учёного – то, суть которого формулирована им в выводах, называемых по его имени законами Кеплера. Они раскрыли идею Коперника в полном её значении и показали её основательность; они составили в истории астрономии фазис перехода от простого знания фактов к их объяснению. Этот фазис, через который прошли или должны со временем пройти все отрасли естествознания, состоит в том, чтобы найти основные общие черты в запутанном ходе явлений. Коперник дал истинное понятие об устройстве солнечной системы; Кеплер нашел основные законы круговращения планет.

Уже Коперник заметил, что в движении планет есть неровности, не объясняемые принятием планетных орбит за круги, в центре которых находится солнце; но он считал необходимым принимать за форму орбит круговую линию, и объяснял неравенства в движении планет по их орбитам предположением, что солнце находится не в центре этих кругов. Кеплер по наблюдениям Тихо Браге увидел, что неравенства в движении особенно велики у Марса. Он занялся их исследованием, и нашел, что предположение Коперника не вполне их объясняет. Рядом глубоких исследований и гениальных соображений он сделал наконец открытие, что истинная форма орбиты Марса – эллипс. Это открытие, оказавшееся справедливым и относительно всех других планета, называется первым законом Кеплера. Он выражается формулой: планеты обращаются около солнца по эллипсу, в одном из фокусов которого находится солнце. Второй закон Кеплера определяет разницы быстроты движения планеты по орбите в разных частях этого пути; он говорит, что площади, описываемые вращением линии, идущей от солнца к планете, и называющейся в эллипсе радиусом-вектором, в равные времена равны. Таким образом, чем дальше будет планета от фокуса, в котором стоит солнце, тем меньше будет длина пути, проходимого ею в продолжение известного времени, например часа, потому что, чем длиннее треугольник, тем меньше ширина его по сравнению с треугольником, имеющим такую же величину поверхности при меньшей длине. Третий закон, открытый Иоганном Кеплером, определяет пропорцию между временами обращения планет вокруг солнца и их расстояниями от него. Он изложен в другом сочинении учёного, называющемся «Гармония вселенной», и выражается словами: квадраты времен обращения разных планет находятся в такой же пропорции между собою, как кубы тех линий их орбит, которые называются большими полуосями этих эллипсов.

Кеплер и открытие закона всемирного тяготения

Та часть астрономии, которая состоит в вычислении наблюдений, тоже чрезвычайно много подвинута вперед трудами Кеплера; он сделал это составлением так называемых Рудольфовых таблиц, изданных им в 1627 году и названных Рудольфовыми в честь царствовавшего тогда императора. Эти таблицы – свод наблюдений, сделанных Тихо Браге и самим Кеплером, и вычислений, сделанных по ним Кеплером; эта работа требовала огромного количества времени и железной воли для своего исполнения.

Изумительны своей гениальностью соображения Иоганна Кеплера о причине, которая вызывает движения планет по найденным им законам. Он уже предугадывал то, что было впоследствии доказано Ньютоном, и объяснял круговращение планет сочетанием силы движения их по тангенсу с силой, влекущей их к солнцу, и достиг убеждения, что эта центростремительная сила тожественна с тем, что называется тяжестью. Таким образом, у него только не было материалов, чтобы найти закон действия силы всеобщего тяготения, и подтвердить свое мнение точными доказательствами, как это было впоследствии сделано Ньютоном ; но он уж нашел, что причина круговращения планет – сила всеобщего тяготения. Кеплер говорит: «Тяжесть – только взаимное влечение тел к сближению. Тяжелые тела на земле стремятся к центру шарообразного тела, части которого они составляют, и если бы земля не была шарообразна, то тела не падали бы вертикально к её поверхности. Если бы луна и земля не удерживались на настоящем своем расстоянии стремлением луны двигаться по тангенсу своей орбиты, то они упали бы друг на друга; – луна прошла бы около трех четвертых долей этого пути, а земля четвертую долю, если предположить, что обе они имеют одинаковую плотность». – Кеплер разгадал также, что причина приливов и отливов – притяжение луны, изменяющее уровень океана. Эти открытия показывают в нем необыкновенную силу ума.

Романтика и мистицизм у Кеплера

При чрезвычайно высоком научном достоинстве сочинений Кеплера, по ним проходит и веяние поэтического духа. Кеплер любит, подобно пифагорейцам и Платону , соединять результаты серьезного исследования с фантастическими мыслями о гармонии чисел и расстояний. Эта склонность вовлекала его иногда в мнения, оказавшиеся несообразными с истиной, но служит новым доказательством творческой силы его воображения. Фантастические мысли развиты у него особенно в тех сочинениях, которые называются «О таинстве устройства вселенной», «Гармония вселенной» и «Сон Кеплера».

Должностные обязанности заставляли Кеплера заниматься астрологическими выкладками. По должности профессора математики в Граце, он был обязан ежегодно составлять календарь; а календарь по тогдашнему обычаю должен был давать астрологические предсказания о погоде, о войне и мире. Кеплер исполнял эту обязанность очень умно: он хорошо изучил правила астрологии, так что мог придавать своим предсказаниям требуемую от них форму, а предсказания делал по внимательному соображению вероятностей и при проницательности своего ума часто предсказывал удачно. Это доставило ему как астрологу большую славу, и многие из важнейших людей Австрии поручали ему делать их гороскопы. В конце жизни Кеплер состоял астрологом при Валленштейне , верившем в астрологию. Впрочем, он сам говорил о недостоверности своих предсказаний, и в письмах его есть много мест, показывающих, что он правильно думал о господствовавшем в его время астрологическом суеверии. Так например, он говорит: «Господи Боже, что было бы с разумной астрономией, если б она не имела при себе свою глупую дочь астрологию. Жалованья математиков так малы, что мать, наверное, терпела бы голод, если бы ничего не приобретала дочь».

Кеплер прожил не слишком длинную и очень нелегкую жизнь. Несмотря на это, он обогатил науку потрясающими достижениями, потребовавшими не только гениальных озарений, но и многолетнего изнурительного труда, масштаб которого удивляет и сегодня.

Иоганн Кеплер – первым в мире! – пришел к заключению, что все планеты подвержены силовому воздействию со стороны солнца, которое и заставляет их двигаться по орбитам

Алексей Левин

По решению Генеральной ассамблеи ООН 2009 год стал Международным годом астрономии в честь 400-летнего юбилея исследования небесных тел с помощью телескопов. Однако 1609 год привнес в историю науки еще одно великое событие: Иоганн Кеплер опубликовал трактат, где были изложены два закона движения планет, которые сейчас носят его имя (третий, и последний, закон появился в печати на десять лет позже). Так что для астрономии нынешний год — дважды юбилейный.

Детство Кеплера, родившегося 27 декабря 1571 года в городке Вейль неподалеку от Штуттгарта, нельзя назвать безоблачным. Семья жила небогато, к тому же он рос практически без отца, который неоднократно нанимался ландскнехтом в чужеземные армии и исчез насовсем, когда Гансу было всего 16 лет. Детей воспитывала мать Катарина, дочь владельца деревенской гостиницы, женщина неуживчивая, сварливая и совершенно необразованная. Гансу светила совершенно ординарная жизнь, но судьба рассудила иначе. Мальчик не вылезал из болезней (оспа, несварение желудка, мигрени) и не годился для физической работы. Но голова у него действовала отлично. В семь лет Ганс поступил в начальную немецкую школу, откуда перешел в латинское училище. В 13-летнем возрасте он выдержал конкурсный экзамен, открывший доступ к духовному образованию. Юноша блестяще окончил семинарии первой и второй ступени и осенью 1589 года стал студентом Тюбингенского университета.


Конечно, сегодня попытки Кеплера объяснить пропорции Солнечной системы с помощью правильных многогранников вызывают улыбку, но ученый верил в свою правоту. Да и было с чего. Согласно Копернику, радиусы планетных орбит от Меркурия до Сатурна относятся как 0,38:0,72:1,00:1,52:5,2:9,2 (радиус земной орбиты принят за единицу). А вычисления на основе кеплеровской модели дают довольно похожие соотношения 0,42:0,76:1,00:1,44:5,3:9,2. Расхождения имеются, но сравнительно небольшие. Первый закон Кеплера (Закон эллипсов). Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце. Второй закон Кеплера (Закон площадей). Каждая планета движется в плоскости, проходящей через центр Солнца, причем за равные времена радиус-вектор, соединяющий Солнце и планету, заметает секторы равной площади. Третий закон Кеплера (Гармонический закон). Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.

В Тюбингене Кеплер провел около пяти лет. За два года он прошел курс факультета свободных искусств и получил степень магистра. Одним из его наставников был Михель Мёстлин — автор довольно известного учебника по астрономии и верный последователь Коперника. Под руководством Мёстлина Кеплер изучил труды греческих геометров, арифметику, тригонометрию и начатки алгебры. Он постиг также тонкости птолемеевской и коперниканской космологии и стал убежденным сторонником гелиоцентрической системы. Однако о занятиях наукой юноша не помышлял и собирался продолжать образование на богословском факультете, куда поступил в 1591 году. Перед этим университетский сенат испросил городские власти Вейля сохранить Кеплеру стипендию на весь оставшися срок обучения. «Юный Кеплер, — писали профессора, — наделен таким выдающимся умом, что от него можно ожидать незаурядных достижений».

Однако духовной карьере Кеплера не суждено было состояться. 13 марта 1594 года его как лучшего выпускника отправили в австрийский город Грац, чтобы срочно заменить скончавшегося учителя математики в лютеранской школе.

Голландские трубы

Кеплер обжился в Граце и смирился со своей новой профессией. Все шло к тому, что он так и останется отлично образованным, но все же вполне рядовым преподавателем провинциальной школы. К счастью для мировой науки, судьба решила иначе. 19 июля 1595 года свершилось событие, которое радикально изменило жизнь Кеплера и вывело его на дорогу великих открытий в физике и астрономии.


Все началось с урока, в ходе которого Кеплер объяснял движение Юпитера и Сатурна по небесной сфере. Каждые 20 лет эти планеты сближаются в поясе зодиакальных созвездий — Юпитер нагоняет Сатурн, а потом уходит вперед (эти встречи имели место в 1563 и 1583 годах и должны были произойти в 1603, 1623 и 1643). С незапамятных времен астрономы и астрологи замечали, что зоны такого сближения каждый раз смещаются в зодиакальном поясе чуть меньше чем на треть полного круга. Кеплер начертил на доске окружность, расположил на ней на равных расстояниях 12 зодиакальных созвездий и отметил несколько сближений Юпитера и Сатурна, начав 1583 годом.

И вот что вышло. Если соединить три последовательных сближения отрезками, получается правильный треугольник, вписанный в зодиакальную окружность. Повторение этой операции дает такой же треугольник, только несколько повернутый (поскольку смещение все же не доходит до 120 градусов). Если продолжать дальше, середины сторон всех получающихся треугольников очертят окружность вдвое меньшего радиуса по сравнению с той, в которую они вписаны. Тут Кеплера осенило. Он знал, что согласно книге Коперника «Об обращении небесных сфер» радиус орбиты Сатурна примерно в 1,75 раза превышает юпитерианский. А эта величина слишком близка к отношению радиусов внешней и внутренней окружностей 2:1, чтобы счесть ее случайным совпадением. А вдруг соотношения между параметрами планетных орбит определяются свойствами определенных геометрических объектов? Позднее Кеплер вспоминал, что это озарение привело его в состояние восторга, которое невозможно передать словами.


Это было лишь начало. Кеплер быстро осознал, что с помощью плоских фигур устройство планетной системы понять невозможно, необходимы объемные тела. Еще античным математикам были известны пять правильных многогранников: четырехгранный тетраэдр, шестигранный куб, восьмигранный октаэдр, 12-гранный додекаэдр и 20-гранный икосаэдр. Кеплер решил, что они укладываются в структуру, которая определяет как число планет (тогда их было известно всего шесть!), так и их орбитальные параметры. Это шесть концентрических сфер, из которых пять содержат вписанные многогранники. Первая, внешняя сфера соответствует орбите Сатурна. В нее вложен куб, а в него — вторая сфера, сфера Юпитера. В эту сферу вписан тетраэдр, в котором расположена сфера Марса. Двигаясь к центру системы, мы пересечем додекаэдр, содержащий вписанную земную сферу, икосаэдр со сферой Венеры и, наконец, октаэдр со сферой Меркурия. Она не содержит вписанных тел, а в ее центре находится Солнце.

Уже в октябре Кеплер начал писать книгу с изложением своей системы. Этот труд несколько месяцев печатался в Тюбингене и был окончательно сброшюрован в марте 1597 года. Его длиннейший заголовок обычно дают в сокращенном варианте: Mysterium cosmographicum — «Тайна мироздания».


В 1611 году Иоганн Кеплер усовершенствовал телескоп, заменив рассеивающую линзу в окуляре собирающей. Это позволило увеличить поле зрения и вынос зрачка, однако система Кеплера дает перевернутое изображение. Практически все последующие телескопы-рефракторы строились по системе Кеплера. Преимущество зрительной трубы Кеплера заключается, в частности, в том, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу.

Кеплер сам отправил монографию нескольким видным астрономам. Одна из копий через третьи руки попала к не слишком известному профессору математики Падуанского университета Галилео Галилею, который отозвался на нее весьма доброжелательным письмом (правда, в основном его обрадовало, что у теории Коперника появился еще один сторонник). Кеплер отправил свой труд и первому астроному Европы датчанину Тихо Браге, который счел упражнения с многогранниками остроумными, но совершенно спекулятивными. Однако в сильно задержавшемся ответном письме Браге дал понять, что готов ознакомить Кеплера со своим обширным архивом наблюдений движений планет, произведенных в лучшей в мире обсерватории на острове Гвен вблизи Копенгагена. Для Кеплера это приглашение оказалось воистину судьбоносным, хоть воспользовался он им далеко не сразу.

Публикация «Тайны мироздания» сделала Кеплера астрономом с именем. Через четверть века он писал, что эта небольшая книга дала толчок всем его последующим исследованиям. И было там по‑настоящему революционное озарение, которое современники практически не заметили. Кеплер — первым в мире! — пришел к заключению, что все планеты подвержены силовому воздействию со стороны Солнца, которое и заставляет их двигаться по орбитам. Эта идея не соответствует принципам ньютоновской динамики (планеты движутся по инерции, а солнечное притяжение лишь искривляет их пути), но она навела Кеплера на очень плодотворные заключения. Из нее следовало, что планеты должны двигаться тем быстрее, чем они ближе к Солнцу, — ведь разгоняющая их сила возрастает по мере приближения к светилу. Через несколько лет логика этого рассуждения помогла Кеплеру открыть законы планетных движений.


Рудольфовы таблицы

Осенью 1598 года в Штирии начались гонения на протестантов. Кеплеру вместе с многими единоверцами пришлось покинуть Грац, но через месяц ему в виде исключения позволили вернуться и продолжить работу в качестве окружного математика. Тем не менее из-за изгнания ректора и почти всех учителей занятия в школе прекратились. Кеплеру стало ясно, что будущего в Граце у него нет. Он предпринимал лихорадочные попытки найти место за пределами Австрии, но безуспешно.

И тут помог Тихо Браге, который к этому времени стал придворным математиком императора Священной Римской империи и короля Богемии Рудольфа II. В декабре 1599 года Браге вторично пригласил Кеплера в целях совместной работы. Еще до получения этого письма Кеплер отправился в имперскую столицу Прагу в надежде стать ассистентом Браге. 4 февраля ученые встретились, и после этого свидания их жизненные линии уже не расплетались, хотя личные отношения оказались очень непростыми. Браге попросил императора взять Кеплера на службу, дабы тот смог обработать его архивы и составить на их основе самые совершенные таблицы планетных движений. Эти таблицы Браге предложил назвать в честь императора — Рудольфовыми. План монарху понравился, и он дал согласие.


Первоначально предполагалась, что для Кеплера создадут специальную должность. Однако вскоре Тихо Браге скоропостижно скончался (среди причин смерти назывались и детективные версии). Через два дня после похорон Браге Кеплера назначили придворным математиком с годовым окладом 500 флоринов. Правда, императорская казна перманентно пустовала и Кеплеру хронически не доплачивали. Однако он получил часть архива Браге — ту, которая относилась к движениям Марса. Эти материалы и легли в основу кеплеровской теории планетных движений, обессмертившей имя своего создателя.

Новая астрономия

Кеплер прожил в Праге 11 лет — самых спокойных и плодотворных. Там он написал свой главный астрономический труд. Сначала Кеплер хотел назвать его «Марсианскими комментариями», но потом придумал заголовок посложнее — «Новая астрономия, обоснованная в соответствии с ее причинами, или Небесная физика, изложенная посредством комментариев к движениям Марса, вычисленных на основе наблюдений благородного мужа Тихо Браге». Именно эта книга была напечатана в судьбоносном для астрономии 1609 году.

Анализ марсианских движений Кеплер начал с Земли. И это естественнно, ведь именно с этой движущейся космической платформы Тихо Браге определял небесные координаты и Марса, и остальных планет. На основании этих измерений Кеплер показал, что Земля то приближается к Солнцу, то удаляется от него. В соответствии с теорией, изложенной еще в «Тайне мироздания», отсюда следует, что скорость орбитального движения Земли уменьшается вдали от Солнца и возрастает по мере приближения к светилу. Именно эту закономерность Кеплер и выявил, обрабатывая результаты Тихо Браге.


Иоганн Кеплер посвятил свою жизнь изучению движения планет Солнечной системы, а названный в его честь космический телескоп (запущен 6 марта 2009 года) будет исследовать планетарные системы других звезд.

Этот вывод позволил ученому по‑новому понять движение Марса. Уже античные астрономы знали, что Марс движется по небосводу с переменной скоростью. Объяснение было таким: и Марс, и прочие планеты совершают комбинации круговых движений, скорости которых строго постоянны, поэтому наблюдаемая переменная скорость — всего лишь видимость. А вот с точки зрения Кеплера, непостоянство скорости Марса совершенно реально и объясняется тем, что эта планета, как и Земля, изменяет свое расстояние от Солнца. Кроме того, Кеплер убедился, что Земля движется вполне аналогично Марсу, то есть является обычной планетой. Это был сильный аргумент в пользу гелиоцентрической теории Коперника, которая в те времена отнюдь не пользовалась всеобщим признанием (в частности, ее не разделял Тихо Браге).

Кеплер поначалу исходил из того, что Земля движется по окружности, центр которой находится не слишком далеко от Солнца. Эта рабочая гипотеза позволила описать изменчивость планетарной скорости Земли в виде простого математического правила: радиус-вектор планеты (отрезок, соединяющий ее с Солнцем) за равные промежутки времени зачерчивает равные площади. В списке законов Кеплера это правило значится под вторым номером, хотя исторически было установлено раньше прочих, в самом конце 1601 или в начале 1602 года.


Второй закон Кеплера следует из того, что орбитальное движение планеты не меняет ее момента количества движения. Сей факт прямо следует из ньютоновской динамики, но Кеплеру, конечно, он не был известен. Свой закон площадей Кеплер фактически угадал, а если и обосновал, то весьма приблизительно. Однако проверка на им же вычисленных параметрах земной орбиты подтвердила, что это правило хорошо соблюдается. Судя по всему, Кеплер в ходе работы над «Новой астрономией» все же не уверился в нем до конца; во всяком случае, он не утверждает его истинности открытым текстом. Математическое доказательство закона площадей дал только Исаак Ньютон. Наверное, не лишне заметить, что этому закону подчиняются любые тела, движущиеся в центральном поле тяготения, даже если они перемещаются по разомкнутым траекториям. Более того, силовой потенциал вовсе не обязан соответствовать ньютоновскому закону обратных квадратов — достаточно, если он зависит только от расстояния до центра силы. Так что второй закон Кеплера обладает куда большей общностью, нежели предполагал его первооткрыватель.

Самым крепким орешком оказалось определение формы марсианской орбиты. С помощью крайне трудоемких вычислений Кеплер установил, что она никак не может быть окружностью. Сначала Кеплер решил, что Марс движется по овалу, потом попробовал нечто вроде сечения яйца, но все эти фигуры явно не соответствовали наблюдениям Тихо Браге. В конце концов Кеплер увидел, что отношение минимального и максимального расстояний между Марсом и Солнцем отличается от единицы на величину, равную половине квадрата орбитального эксцентриситета (отношения дистанции между Солнцем и центром орбиты к ее радиусу). Именно такое соотношение должно выполняться, если орбита — правильный эллипс (в предположении, что эксцентриситет много меньше единицы). Выходило, что Марс движется по эллипсу, в одном из фокусов которого расположено Солнце. Если это утверждение обобщить на остальные планеты, получается первый закон Кеплера. Правда, такое обобщение Кеплер сформулировал позднее, но, судя по всему, считал так с самого начала.


Кеплер окончательно пришел к концепции эллиптической орбиты Марса весной 1605 года. После этого он всего за несколько месяцев закончил рукопись «Новой астрономии» (книга вышла лишь спустя четыре года, но на то были ненаучные причины).

Колдовство, война и гармония мира

Публикация этой книги принесла Кеплеру европейскую известность. Правда, его результаты признали далеко не все — например, их так и не принял (а возможно, и не понял) великий Галилей. Но такова судьба едва ли не всех великих открытий.

А жизнь продолжалась — и не всегда удачно. Умерла жена, оставив Кеплера с двумя маленькими детьми. Незадолго до этого с престола был смещен покровитель Кеплера Рудольф II. Осложнились отношения с лютеранскими священниками, которые заподозрили его в сочувствии кальвинизму. Из-за этого Кеплер не смог получить работу в Вюртемберге, куда хотел вернуться. После длительных переговоров Кеплеру предложили место математика в Линце, столице Верхней Австрии, на условиях, что он продолжит работу над таблицами планетных движений и займется местной картографией. Кеплер перебрался в Линц в 1612 году и прожил там 14 с половиной лет. Там он повторно женился, и супруга родила ему семерых детей.

На годы жизни в Линце пришелся длительный процесс по обвинению матери Кеплера в колдовстве, и ее защита отняла у ученого много здоровья и душевных сил. К тому же весной 1618 года началась Тридцатилетняя война, со временем захлестнувшая и Верхнюю Австрию.


Но Кеплер работал — и как работал! В 1619 году он опубликовал свой любимый труд «Пять книг гармонии мира». Об астрономии в нем говорится немного, больше о геометрии и философии. Однако именно на страницах этой книги появился третий закон Кеплера, который он открыл 15 мая 1618 года.

В 1617—1621 годах увидел свет публиковавшийся по частям самый обширный труд Кеплера «Очерки коперниканской астрономии», первый в мире учебник с детальным описанием гелиоцентрической модели мира. В этой книге законы планетных движений представлены как общие принципы, которым подчиняются все планеты; там же приведены результаты вычислений, с помощью которых Кеплер определил орбитальные параметры Меркурия, Венеры, Юпитера и Сатурна. В этой монографии впервые появился термин «инерция» — правда, не в том понимании, что сложилось после работ Галилея и Ньютона.

В конце пребывания в Праге после изнурительных переговоров с наследниками Тихо Браге Кеплер получил в свое распоряжение весь архив его наблюдений и у него наконец-то появилась возможность вплотную впрячься в составление астрономических таблиц, ради которых его взял на службу покойный Рудольф II. Эта исполинская работа была завершена во второй половине 1624 года.

Стереометрия винных бочек и путешествие на Луну

Кеплер известен прежде всего как астроном. Кроме упомянутых трудов он написал книгу о своих наблюдениях сверхновой звезды, вспыхнувшей в октябре 1604 года. Он первым объяснил возникновение приливов притяжением Луны и первым предположил, что Солнце вращается вокруг собственной оси. Однако его достижения отнюдь не ограничиваются небесной наукой. В 1604 и 1611 годах Кеплер опубликовал фундаментальные труды по оптике и физиологии зрения. Во второй работе, «Диоптрике», он не только объяснил принцип действия тогдашних подзорных труб с собирающим объективом и рассеивающим окуляром, но и предложил конструкцию трубы нового типа с двумя выпуклыми линзами (с тех пор ее называют кеплеровской). Его математические исследования, собранные в книге «Новая стереометрия винных бочек», изданной в 1615 году, проложили путь к интегральному исчислению. Кеплер первым вычислил общепринятый ныне год рождения Иисуса Христа (4 год новой эры) и написал изданный посмертно рассказ «Сновидение» о путешествие на Луну — вероятно, первое научно-фантастическое произведение в мировой литературе. И, наконец, кеплеровская идея объяснения свойств мироздания на основе фундаментальных геометрических симметрий возродилась в современной физике элементарных частиц. В общем, Кеплер был просто обыкновенным гением.

Конец пути

Выпустив в свет «Рудольфовы таблицы», Кеплер выполнил обязательства перед имперским правительством. Ученый мог остаться в прежней должности императорского математика ценой перехода в католичество, но решительно от этого отказался. Он готов был переехать в Англию, но в конце концов согласился пойти на службу математиком к австрийскому военачальнику Альбрехту Валленштейну.


В августе 1630 года Валленштейн был смещен со своего высокого поста, так и не выплатив Кеплеру обещанного жалованья. В надежде получить хоть часть причитавшихся денег Кеплер в октябре отправился в Регенсбург, где заседал имперский сейм. Он добрался туда вконец простуженным и 15 ноября скончался. На не сохранившемся до наших дней надгробии была выбита латинская эпитафия, сочиненная самим Кеплером:

Mensus eram coelos; nunc terrae meteor umbras;

mens coelestis erat; corporis umbra jacet.

Я небеса измерял, ныне тени Земли измеряю.

Дух мой на небе жил, здесь же тень тела лежит.

> > Иоганн Кеплер

Биография Иоганн Кеплер (1571-1630 гг.)

Краткая биография:

Образование : Тюбингенский университет

Место рождения : Вайль-дер-Штадт, Священная Римская империя

Место смерти : Регенсбург

– немецкий астроном, математик: биография с фото, открытия и вклад в астрономию, законы движения планет, приемник Браге, влияние на Ньютона.

Иоганн Кеплер родился раньше назначенного времени 27 декабря 1571 года. Его краткая биография началась в Вайль-дер-Штадт (Германия). Он был болезненным ребенком и в раннее года болел оспой. Кеплер отправился учиться в университет Тюбингена, протестантское учреждение, где изучал теологию и философию, а также математику и астрономию. После завершения своего образования, он был принят на работу в качестве преподавателя математики и астрономии в Граце, Германия. В 1596 году, в возрасте 24 лет, Кеплер опубликовал Mysterium Cosmographicum (Космографическую Тайну). В этой работе он защищал теории Коперника, который отстаивал позицию о том, что Солнце, а не Земля, было в центре Солнечной Системы. был подвержен сильному влиянию пифагорейцев, полагая, что Вселенная управляется геометрическими отношениями, которые соответствуют вписанной и описанной окружностей пяти регулярных многоугольников.

В 1598 году, школа Кеплера в Граце была закрыта по инициативе Фердинанда Габсбурга. Кеплер хотел вернуться в Тюбинген, но его не желали отпускать, благодаря его известной вере в Коперниканизм. Астроном Браге тайно предложил Иоганну Кеплеру приехать в Прагу, чтобы тот был его помощником. Столкнувшись с католическим преследованием протестантских меньшинств в Граце, Кеплер принял предложение Браге и уехал в Прагу 1 января 1600 года. Когда Браге умер, на следующий год, Кеплер был назначен его преемником. Кеплер унаследовал от Браге знания о многих точном расположении определенных планет, в частности это касается Марса. Кеплер использовал эти данные для изучения орбиты планет. Он отказался от утверждения, что планета двигалась по кругу, и доказал, что орбита Марса на самом деле - эллипс. Этот, первый из законов Кеплера движения планет, появился в Astronomia Nova (Новая Астрономия), которую он опубликовал в 1609 году. Его второй закон движения планет, также опубликован в 1609 году, там он описывает концепцию планетарной скорости. Его третий закон, опубликован в 1619 году, он описывает соотношения между орбитальным расстоянием вращающихся планет и их расстояния от Солнца.

Если говорить коротко, то три закона Иоганна Кеплера движения планет звучат так:

  • Каждая планета Солнечной системы вращается по эллипсу, Солнце находится в одном из фокусов такой планеты;
  • Каждая планета движется в плоскости, которая проходит через центр Солнца, а за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.
  • Квадраты периодов обращения планет вокруг Солнца соотносятся, как кубы больших полуосей орбит планет.

Иоганн Кеплер умер в Регенсбурге (Германия) 15 ноября 1630 года после непродолжительной болезни. Его важная работа позже заложит основу для Исаака Ньютона и теории гравитации. В биографии астрономов, Иоганн Кеплер был связывающем звеном между мыслями Коперника и Ньютона, и рассматривается как особо важная фигура в научной революции 17-го столетия.

Понравилась статья? Поделиться с друзьями: