Спектр излучения абсолютно черного тела. Реферат: Абсолютно черное тело. Термин был введён Густавом Кирхгофомв1862 году. Практическая модель

Тепловым называют электромагнитное излучение, которое испускают нагретые тела за счет своей внутренней энергии. Тепловое излучение уменьшает внутреннюю энергию тела, и, следовательно, его температуру. Спектральной характеристикой теплового излучения является спектральная плотность энергетической светимости.

2. Какое тело называют абсолютно черным? Приведите примеры абсолютно черных тел.

Абсолютно черное тело - это тело, которое поглощает всю энергию падающего на него излучения любой частоты при произвольной температуре (черная дыра).

3. Что такое ультрафиолетовая катастрофа? Сформулируйте квантовую гипотезу Планка.

Ультрафиолетовой катастрофой называют расхождение результатов эксперимента с классической волновой теорией. Квантовая гипотеза Планка: энергия и частота излучения связаны друг с другом. Излучение молекулами и атомами вещества происходит отдельными порциями - квантами.

4. Какую микрочастицу называют фотоном? Перечислите основные физические характеристики фотона.

Фотон - квант электромагнитного излучения.

1) его энергия пропорциональна частоте электромагнитного излучения.

3) его скорость во всех системах отсчета равна скорости света в вакууме.

4) его масса покоя равна 0.

5) импульс фотона равен:

6) Давление электромагнитного излучения:

5. Сформулируйте законы излучения черного тела: законы Вина и Стефана-Больцмана.

Закон Стефана-Больцмана: интегральная светимость абсолютно черного тела зависит только от его температуры

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

государственное образовательное учреждение высшего профессионального образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Реферат по дисциплине

«Техническая оптика»

тема: «Абсолютно черное тело»

Выполнил: студент гр. ОБДзс-07

Кобаснян Степан Сергеевич Проверил: преподаватель дисциплины

Сидорова Анастасия Эдуардовна

г.Тюмень 2009г.

Абсолютно чёрное тело - физическая абстракция, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (т. е. имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце. Термин был введён Густавом Кирхгофом в 1862.

Модель абсолютно черного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет из себя замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение.

Законы излучения абсолютно чёрного тела

Классический подход

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, исходя из представлений классической термодинамики, вывел следующую формулу:

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана-Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином "закон смещения Вина" называют закон максимума.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C 1 и C 2 . С учётом этого, второй закон Вина можно записать в виде:

Закон Релея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Релея - Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея - Джинса при

.

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где I (ν)d ν - мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + d ν.

Эквивалентно,

,

где u (λ)d λ - мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + d λ.

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана :

,

где j - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

где T - температура в кельвинах, а λ max - длина волны с максимальной интенсивностью в метрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна

, его давление равно . Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

Цветность чернотельного излучения

Примечание: Цвета даны в сравнении с рассеянным дневным светом (D 65). Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех частот или длин волн и для любой температуры, т.е.:

Из определения абсолютно черного тела следует, что оно должно поглощать все падающее на него излучение.

Понятие "абсолютно черное тело" - это модельное понятие. В природе абсолютно черных тел не существует, но можно создать устройство, являющееся хорошим приближением к абсолютно черному телу - модель абсолютно черного тела .

Модель абсолютно черного тела - это замкнутая полость с маленьким, по сравнению с ее размерами, отверстием (рис. 1.2). Полость изготавливают из материала, достаточно хорошо поглощающего излучение. Излучение, попавшее в отверстие, прежде чем выйти из отверстия, многократно отражается от внутренней поверхности полости.

При каждом отражении часть энергии поглощается, в результате из отверстия выходит отраженный поток dФ", являющийся очень малой частью попавшего в него потока излучения dФ. В результате поглощательная способность отверстия в полости будет близка к единице.

Если внутренние стенки полости поддерживать при температуре Т, то из отверстия будет выходить излучение, свойства которого будут очень близки к свойствам излучения абсолютно черного тела. Внутри полости это излучение будет находиться в термодинамическом равновесии с веществом полости.

По определению плотности энергии, объемная плотность энергии w(Т) равновесного излучения в полости - это:

где dЕ - энергия излучения в объеме dV. Спектральное распределение объемной плотности дается функциями u(λ,T) (или u(ω,T)), которые вводятся аналогично спектральной плотности энергетической светимости ((1.6) и (1.9)), т.е.:

Здесь dw λ и dw ω - объемная плотность энергии в соответствующем интервале длин волн dλ или частот dω.

Закон Кирхгофа утверждает, что отношение испускательной способности тела ((1.6) и (1.9)) к его поглощательной способности (1.14) одинаково для всех тел и является универсальной функцией частоты ω (или длины волны λ) и температуры Т, т.е.:

Очевидно, что поглощательная способность a ω (или a λ ) для разных тел разная, то из закона Кирхгофа следует, что чем сильнее тело поглощает излучение, тем сильнее оно должно это излучение испускать. Так как для абсолютного черного тела a ω ≡ 1 (или a λ ≡ 1), то отсюда следует, что в случае абсолютночерного тела:

Иными словами, f(ω,T) либо φ(λ,T), есть не что иное как, спектральная плотность энергетической светимости (или испускательная способность) абсолютно черного тела.

Функция φ(λ,T) и f(ω,T) связаны со спектральной плотностью энергии излучения абсолютно черного тела следующими соотношениями:

где c - скорость света в вакууме.

Схема установки для опытного определения зависимости φ(λ,T) приведена на рисунке 1.3.

Излучение испускается из отверстия замкнутой полости, нагретой до температуры Т, затем попадает на спектральный прибор (призменный или решеточный монохроматор), который выделяет излучение в интервале частот от λ до λ + dλ. Это излучение попадает на приемник, который позволяет измерить падающую на него мощность излучения. Поделив эту приходящуюся на интервал от λ до λ + dλ мощность на площадь излучателя (площадь отверстия в полости!), мы получим значение функции φ(λ,T) для данной длины волны λ и температуры Т. Полученные экспериментальные результаты воспроизведены на рисунке 1.4.

Итоги лекции N 1

1. Немецкий физик Макс Планк в 1900 г. выдвинул гипотезу, согласно которой электромагнитная энергия излучается порциями, квантами энергии. Величина кванта энергии (см. (1.2):

ε = hv ,

где h=6,6261·10 -34 Дж·с - постоянная Планка, v - частота колебаний электромагнитной волны, излучаемой телом.

Эта гипотеза позволила Планку решить проблему излучения абсолютно черного тела.

2. А Эйнштейн, развивая понятие Планка о квантах энергии ввел в 1905 г. понятие "квант света" или фотон. Согласно Эйнштейну квант электромагнитной энергии ε = hv движется в виде фотона, локализованного в малой области пространства. Представление о фотонах позволило Эйнштейну решить проблему фотоэффекта.

3. Английский физик Э. Резерфорд, основываясь на экспериментальных исследованиях, проведенных в 1909-1910 гг., построил планетарную модель атома. Согласно этой модели в центре атома расположено очень маленькое ядро (r я ~ 10 -15 м), в котором сосредоточена почти вся масса атома. Заряд ядра положителен. Отрицательно заряженные электроны движутся вокруг ядра наподобие планет солнечной системы по орбитам, размер которых ~ 10 -10 м.

4. Атом в модели Резерфорда оказался неустойчивым: согласно электродинамике Максвелла электроны, двигаясь по круговым орбитам, должны непрерывно излучать энергию, в результате чего за время ~ 10 -8 с они должны упасть на ядро. Но весь наш опыт свидетельствует о стабильности атома. Так возникла проблема стабильности атома.

5. Решил проблему стабильности атома в 1913 г. датский физик Нильс Бор на основе выдвинутых им двух постулатов. В теории атома водорода, развитой Н. Бором, существенную роль играет постоянная Планка.

6. Тепловым называется электромагнитное излучение, испускаемое веществом за счет его внутренней энергии. Тепловое излучение может находиться в термодинамическом равновесии с окружающими телами.

7. Энергетическая светимость тела R - это отношение энергии dE, испускаемой за время dt поверхностью dS по всем направлениям, к dt и dS (см. (1.5)):

8. Спектральная плотность энергетической светимости r λ (или испускательная способность тела) - это отношение энергетической светимости dR, взятой в бесконечно малом интервале длин волн dλ, к величине dλ (см. (1.6)):

9. Поток излучения Ф - это отношение энергии dЕ, переносимой электромагнитным излучением через какую-либо поверхность ко времени переноса dt, значительно превышающему период электромагнитных колебаний (см. (1.13)):

10. Поглощательная способность тела a λ - это отношение поглощаемого телом потока излучения dФ λ " в интервале длин волн dλ к падающему на него потоку dФ λ в том же интервале dλ, (см. (1.14):

11. Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех длин волн и для любой температуры, т.е.

Абсолютно черное тело - это модельное понятие.

12. Закон Кирхгофа утверждает, что отношение испускательной способности тела r λ к его поглощательной способности а λ одинаково для всех тел и является универсальной функцией длины волны λ (или частоты ω) и температуры Т (см. (1.17)):


ЛЕКЦИЯ N 2

Проблема излучения абсолютно черного тела. Формула Планка. Закон Стефана-Больцмана, закон Вина

§ 1. Проблема излучения абсолютно черного тела . Формула Планка

Проблема излучения абсолютно черного тела состояла в том, чтобы теоретически получить зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела.

Казалось, что ситуация ясна: при заданной температуре Т молекулы вещества излучающей полости имеют максвелловское распределение по скоростям и излучают электромагнитные волны в соответствии с законами классической электродинамики. Излучение находится в термодинамическом равновесии с веществом, значит для нахождения спектральной плотности энергии излучения u(λ,T) и связанной с ней функции φ(λ,Т) можно использовать законы термодинамики и классической статистики.

Однако, все попытки теоретиков получить на основе классической физики закон излучения абсолютно черного тела потерпели неудачу.

Частичный вклад в решение этой проблемы внесли Густав Кирхгоф, Вильгельм Вин, Иозеф Стефан, Людвиг Больцман, Джон Уильям Релей, Джеймс Хонвуд Джинс.

Проблема излучения абсолютно черного тела была решена Максом Планком. Для этого ему пришлось отказаться от классических представлений и сделать предположение о том, что заряд, совершающий колебания с частотой v , может получать или отдавать энергию порциями, или квантами.

Величина кванта энергии в соответствии с (1.2) и (1.4):

где h - постоянная Планка; v - частота колебаний электромагнитной волны, излученной колеблющемся зарядом; ω = 2πv - круговая частота.

На основе представления о квантах энергии М. Планк, используя методы статистической термодинамики, получил выражение для функции u(ω,Т), дающей распределение плотности энергии в спектре излучения абсолютного черного тела:

Вывод этой формулы будет дан в лекции N 12, § 3 после того, как мы познакомимся с основами квантовой статистики.

Для перехода к спектральной плотности энергетической светимости f(ω,Т) запишем вторую формулу (1.19):

Используя это соотношение и формулу Планка (2.1) для u(ω,T), получим, что:

Это и есть формула Планка для спектральной плотности энергетической светимости f(ω,T) .

Теперь мы получим формулу Планка для φ(λ,Т).Как мы знаем из (1.18), в случае абсолютно черного тела f(ω,T) = r ω , а φ(λ,Т) = r λ .

Связь между r λ и r ω дает формула (1.12), применяя ее мы получим:

Здесь мы аргумент ω функции f(ω,Т) выразили через длину волны λ. Подставляя сюда формулу Планка для f(ω,Т)из (2.2), получим формулу Планка для φ(λ,Т) - спектральной плотности энергетической светимости в зависимости от длины волны λ:

График этой функции хорошо совпадает с экспериментальными графиками φ(λ,Т) для всех длин волн и температур.

Это и означает, что проблем излучения абсолютно черного тела решена.

§ 2. Закон Стефана-Больцмана и закон Вина

Из (1.11) для абсолютно черного тела, когда r ω = f(λ,Т), получим энергетическую светимость R(T), интегрируя функцию f(ω,Т) (2.2) во всем интервале частот.

Интегрирование дает:

Введем обозначение:

тогда выражение для энергетической светимости R примет следующий вид:

Это и есть закон Стефана-Больцмана .

М. Стефан на основе анализа опытных данных пришел в 1879 г. к выводу, что энергетическая светимость любого тела пропорциональна четвертой степени температуры.

Л. Больцман в 1884 г. нашел из термодинамических соображений, что такая зависимость энергетической светимости от температуры справедлива лишь для абсолютно черного тела.

Постоянная σ носит название постоянной Стефана-Больцмана . Ее экспериментальное значение:

Вычисления по теоретической формуле дают для σ результат очень хорошо согласующийся с экспериментальным.

Отметим, что графически энергетическая светимость равна площади, ограниченной графиком функции f(ω,Т), это иллюстрирует рисунок 2.1.

Максимум графика спектральной плотности энергетической светимости φ(λ,Т) при повышении температуры смещается в область более коротких волн (рис. 2.2). Для нахождения закона, по которому происходит смещение максимума φ(λ,Т) в зависимости от температуры, надо исследовать функцию φ(λ,Т) на максимум. Определив положение этого максимума, мы получим закон его перемещения с изменением температуры.

Как известно из математики, для исследования функции на максимум надо найти ее производную и приравнять к нулю:

Подставив сюда φ(λ,Т) из (1.23) и взяв производную, получим три корня алгебраического уравнения относительно переменной λ. Два из них (λ = 0 и λ = ∞) соответствуют нулевым минимумам функции φ(λ,Т). Для третьего корня получается приближенное выражение:

Введем обозначение:

тогда положение максимума функции φ(λ,Т) будет определятся простой формулой:

Это и есть закон смещения Вина .

Он назван так в честь В. Вина, теоретически получившим в 1894 г. это соотношение. Постоянная в законе смещения Вина имеет следующее численное значение:

Итоги лекции N 2

1. Проблема излучения абсолютно черного тела состояла в том, что все попытки получить на основе классической физики зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела потерпели неудачу.

2. Эту проблему решил в 1900 г. М. Планк на основе своей гипотезы квантов: заряд, совершающий колебания с частотой v , может получить или отдавать энергию порциями или квантами. Величина кванта энергии:

здесь h = 6,626 ·10 -34 - постоянная Планка, величина Дж·с также называется постоянной Планка ["аш" с чертой], ω - круговая (циклическая) частота.

3. Формула Планка для спектральной плотности энергетической светимости абсолютно черного тела имеет следующий вид (см. (2.4):

здесь λ - длина волны электромагнитного излучения, Т - абсолютная температура, h - постоянная Планка, с - скорость света в вакууме, k - постоянная Больцмана.

4. Из формулы Планка следует выражение для энергетической светимости R абсолютно черного тела:

которое позволяет теоретически вычислить постоянную Стефана-Больцмана (см. (2.5)):

теоретическое значение которой хорошо совпадает с ее экспериментальным значением:

в законе Стефана-Больцмана (см.(2.6)):

5. Из формулы Планка следует закон смещения Вина, определяющий λ max - положение максимума функции φ(λ,Т) в зависимости от абсолютной температуры (см. (2.9):

Для b - постоянной Вина - из формулы Планка получается следующее выражение (см. (2.8)):

Постоянная Вина имеет следующее значение b = 2,90 ·10 -3 м·К.


ЛЕКЦИЯ N 3

Проблема фотоэффекта . Уравнение Эйнштейна для фотоэффекта

§ 1. Проблема фотоэффект а

Фотоэффект - это испускание электронов веществом под действием электромагнитного излучения.

Такой фотоэффект называют внешним. Именно о нем мы будем говорить в этой главе. Есть еще и внутренний фотоэффект . (см. лекцию 13, § 2).

В 1887 г. немецкий физик Генрих Герц обнаружил, что ультрафиолетовый свет, освещающий отрицательный электрод в разряднике, облегчает прохождение разряда. В 1888-89 гг. русский физик А. Г. Столетов занимается систематическим исследованием фотоэффекта (схема его установки приведена на рисунке). Исследования проводились в атмосфере газа, что сильно усложняло происходившие процессы.

Столетов обнаружил, что:

1) наибольшее воздействие оказывают ультрафиолетовые лучи;

2) сила тока возрастает с увеличением интенсивности света, освещающего фотокатод;

3) испущенные под действием света заряды имеют отрицательный знак.

Дальнейшие исследования фотоэффекта производились в 1900-1904 гг. немецким физиком Ф. Ленардом в наивысшем достигнутом в то время вакууме.

Ленарду удалось установить, что скорость вылетающих из фотокатода электронов не зависит от интенсивности света и прямо пропорционально его частоте . Так родилась проблема фотоэффекта . Объяснить результаты опытов Ленарда на основе электродинамики Максвелла было невозможно!

На рисунке 3.2 изображена установка, позволяющая детально изучать фотоэффект.

Электроды, фотокатод и анод , помещены в баллон, из которого откачан воздух. Свет на фотокатод подается через кварцевое окошко . Кварц, в отличие от стекла, хорошо пропускает ультрафиолетовые лучи. Разность потенциалов (напряжение) между фотокатодом и анодом измеряет вольтметр . Ток в цепи анода измеряется чувствительным микроамперметром . Для регулировки напряжения батарея питания подключена к реостату со средней точкой. Если движок реостата стоит против средней точки, подсоединенной через микроамперметр к аноду, то разность потенциалов между фотокатодом и анодом равна нулю. При смещении движка влево, потенциал анода становится отрицательным относительно катода. Если движок реостата сдвигать вправо от средней точки, то потенциал анода становится положительным.

Вольт-амперная характеристика установки по изучению фотоэффекта позволяет получить информацию об энергии электронов, испускаемых фотокатодом.

Вольт-амперная характеристика - это зависимость фототока i от напряжения между катодом и анодом U. При освещении светом, частота v которого достаточна для возникновения фотоэффекта, вольт-амперная характеристика имеет вид графика, изображенного на рис. 3.3:

Из этой характеристики следует, что при некотором положительном напряжении на аноде фототок i достигает насыщения. При этом все электроны, испущенные фотокатодом в единицу времени, попадают за это же время на анод.

При U = 0 часть электронов долетает до анода и создает фототок i 0 . При некотором отрицательном напряжении на аноде - U зад - фототок прекращается. При этом значении напряжения максимальная кинетическая энергия фотоэлектрона у фотокатода (mv 2 max)/2 полностью расходуется на совершение работы против сил электрического поля:

В этой формуле m e - масса электрона; v max - его максимальная скорость у фотокатода; e - абсолютное значение заряда электрона.

Таким образом, измерив задерживающее напряжение U зад, можно найти кинетическую энергию (и скорость электрона) сразу после его вылета из фотокатода.

Опыт показал, что

1) энергия вылетевших из фотокатода электронов (и их скорость) не зависела от интенсивности света! При изменении частоты света v меняется и U зад, т.е. максимальная кинетическая энергия электронов, покидающих фотокатод;

2) максимальная кинетическая энергия электронов, у фотокатода, (mv 2 max)/2, прямо пропорциональна частоте v света, освещающего фотокатод.

Проблема , как и в случае с излучением абсолютно черного тела, состояла в том, что теоретические предсказания, сделанные для фотоэффекта на основе классической физики (электродинамики Максвелла), противоречили результатам опытов. Интенсивность света I в классической электродинамике является плотностью потока энергии световой волны. Во-первых, с этой точки зрения, энергия, передаваемая световой волной электрону, должна быть пропорциональна интенсивности света. Опыт не подтверждает это предсказание. Во-вторых, в классической электродинамике нет никаких объяснений прямой пропорциональности кинетической энергии электронов, (mv 2 max)/2, частоте света v.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

государственное образовательное учреждение высшего профессионального образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Реферат по дисциплине

«Техническая оптика»

тема: «Абсолютно черное тело»

Выполнил: студент гр. ОБДзс-07

Кобаснян Степан Сергеевич Проверил: преподаватель дисциплины

Сидорова Анастасия Эдуардовна

г.Тюмень 2009г.

Абсолютно чёрное тело - физическая абстракция, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Модель абсолютно черного тела

Законы излучения абсолютно чёрного тела

Классический подход

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, исходя из представлений классической термодинамики, вывел следующую формулу:

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана-Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином "закон смещения Вина" называют закон максимума.

Второй закон излучения Вина

Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C 1 и C 2 . С учётом этого, второй закон Вина можно записать в виде:

Закон Релея - Джинса

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где I (ν)d ν - мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + d ν.

Эквивалентно,

,

где u (λ)d λ - мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + d λ.

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана :

где j - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

где T - температура в кельвинах, а λ max - длина волны с максимальной интенсивностью в метрах.

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна , его давление равно . Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

Цветность чернотельного излучения

Примечание: Цвета даны в сравнении с рассеянным дневным светом (D 65). Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Абсолютно чёрное тело - физическая абстракция, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (т. е. имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце. Термин был введён Густавом Кирхгофом в 1862.

****** нарисовать модель тела.******

Модель абсолютно черного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет из себя замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение.

Первый закон излучения Вина

В 1893 году Вильгельм Вин.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Закон Релея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Релея - Джинса:

На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Закон Планка определяет Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты

Закон Стефана - Больцмана определяет общую энергию теплового излучения определяется законом

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Состоящая из параллельно ориентированных углеродных нанотрубок , - поглощает 99,965 % падающего на него излучения в диапазонах видимого света, микроволн и радиоволн.

Термин «абсолютно чёрное тело» был введён Густавом Кирхгофом в 1862 году .

Энциклопедичный YouTube

    1 / 5

    ✪ Элементарные частицы | абсолютно чёрное тело

    ✪ Савельев-Трофимов А. Б. - Введение в квантовую физику - Абсолютно чёрное тело (Лекция 2)

    ✪ Физика для чайников. Урок 59. Абсолютно чёрное тело

    ✪ Физика для чайников. Лекция 59. Абсолютно чёрное тело

    ✪ Авакянц Л. П. - Введение в квантовую физику. Абсолютно чёрное тело (Лекция 1)

    Субтитры

Практическая модель

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики .

Первый закон излучения Вина

k - постоянная Больцмана , c - скорость света в вакууме.

Закон Рэлея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея - Джинса:

u (ω , T) = k T ω 2 π 2 c 3 {\displaystyle u(\omega ,T)=kT{\frac {\omega ^{2}}{\pi ^{2}c^{3}}}}

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением , поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой .

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка , которая будет совпадать с формулой Рэлея - Джинса при ℏ ω / k T ≪ 1 {\displaystyle \hbar \omega /kT\ll 1} .

Этот факт является прекрасной иллюстрацией действия принципа соответствия , согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

R (ν , T) = 2 π h ν 3 c 2 1 e h ν / k T − 1 , {\displaystyle R(\nu ,T)={\frac {2\pi h\nu ^{3}}{c^{2}}}{\frac {1}{e^{h\nu /kT}-1}},}

где R (ν , T) {\displaystyle R(\nu ,T)} - мощность излучения на единицу площади излучающей поверхности в единичном интервале частот (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1), что эквивалентно

R (λ , T) = 2 π h c 2 λ 5 1 e h c / λ k T − 1 , {\displaystyle R(\lambda ,T)={2\pi h{c^{2}} \over \lambda ^{5}}{1 \over e^{hc/\lambda kT}-1},}

где R (λ , T) {\displaystyle R(\lambda ,T)} - мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн (размерность в СИ: Дж·с −1 ·м −2 ·м −1).

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана, который гласит:

j = σ T 4 , {\displaystyle j=\sigma T^{4},}

где j {\displaystyle j} - мощность на единицу площади излучающей поверхности, а

σ = 2 π 5 k 4 15 c 2 h 3 = π 2 k 4 60 ℏ 3 c 2 ≃ 5,670 400 (40) ⋅ 10 − 8 {\displaystyle \sigma ={\frac {2\pi ^{5}k^{4}}{15c^{2}h^{3}}}={\frac {\pi ^{2}k^{4}}{60\hbar ^{3}c^{2}}}\simeq 5{,}670400(40)\cdot 10^{-8}} Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T {\displaystyle T} = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 K мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

j = ϵ σ T 4 , {\displaystyle j=\epsilon \sigma T^{4},\ }

где ϵ {\displaystyle \epsilon } - степень черноты. Для всех веществ ϵ < 1 {\displaystyle \epsilon <1} , для абсолютно чёрного тела ϵ = 1 {\displaystyle \epsilon =1} , для других объектов в силу закона Кирхгофа степень черноты равна коэффициенту поглощения : ϵ = α = 1 − ρ − τ {\displaystyle \epsilon =\alpha =1-\rho -\tau } , где α {\displaystyle \alpha } - коэффициент поглощения, ρ {\displaystyle \rho } - коэффициент отражения, а τ {\displaystyle \tau } - коэффициент пропускания. Именно поэтому для уменьшения тепловой радиации поверхность окрашивают в белый цвет или наносят блестящее покрытие, а для увеличения - затемняют.

Константу Стефана - Больцмана σ {\displaystyle \sigma } можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемы ультрафиолетовой катастрофы).

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

λ max = 0,002 8999 T {\displaystyle \lambda _{\max }={\frac {0{,}0028999}{T}}}

где T {\displaystyle T} - температура в кельвинах , а λ max {\displaystyle \lambda _{\max }} - длина волны с максимальной интенсивностью в метрах .

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 K) лежит на длине волны 9400 нм (в инфракрасной области спектра).

P = a 3 T 4 , {\displaystyle P={\frac {a}{3}}T^{4},} (Термическое уравнение состояния)
U = a V T 4 , {\displaystyle U=aVT^{4},} (Калорическое уравнение состояния для внутренней энергии)
U = a V (3 S 4 a V) 4 3 , {\displaystyle U=aV\left({\frac {3S}{4aV}}\right)^{\mathsf {\frac {4}{3}}},} (Каноническое уравнение состояния для внутренней энергии)
H = (3 P a) 1 4 S , {\displaystyle H=\left({\frac {3P}{a}}\right)^{\mathsf {\frac {1}{4}}}S,} энтальпии)
F = − 1 3 a V T 4 , {\displaystyle F=-{\frac {1}{3}}aVT^{4},} (Каноническое уравнение состояния для потенциала Гельмгольца)
Ω = − 1 3 α V T 4 , {\displaystyle \Omega =-{\frac {1}{3}}\alpha VT^{4},} (Каноническое уравнение состояния для потенциала Ландау)
S = 4 a 3 V T 3 , {\displaystyle S={\frac {4a}{3}}VT^{3},} (Энтропия)
C V = 4 a V T 3 , {\displaystyle C_{V}=4aVT^{3},} (Теплоёмкость при постоянном объёме)
γ = ∞ , {\displaystyle \gamma =\infty ,} (
Понравилась статья? Поделиться с друзьями: