Железо и его соединения

Оксидами железа называют соединения железа с кислородом.

Наиболее известны три оксида железа: оксид железа (II) – FeO ,оксид железа (III ) – Fe 2 O 3 и оксид железа (II , III ) – Fe 3 O 4 .

Оксид железа (II)


Химическая формула оксида двухвалентного железа - FeO . Это соединение имеет чёрный цвет.

FeO легко реагирует с разбавленной соляной кислотой и концентрированной азотной кислотой.

FeO + 2HCl → FeCl 2 + H 2 O

FeO + 4HNO 3 → Fe(NO 3) 3 + NO 2 + 2H 2 O

С водой и с солями в реакцию не вступает.

При взаимодействии с водородом при температуре 350 о С и коксом при температуре выше 1000 о С восстанавливается до чистого железа.

FeO +H 2 → Fe + H 2 O

FeO +C → Fe + CO

Получают оксид железа (II) разными способами:

1. В результате реакции восстановления оксида трёхвалентного железа угарным газом.

Fe 2 O 3 + CO → 2 FeO + CO 2

2. Нагревая железо при низком давлении кислорода

2Fe + O 2 → 2 FeO

3. Разлагая оксалат двухвалентного железа в вакууме

FeC 2 O 4 → FeO +CO + CO 2

4. Взаимодействием железа с оксидами железа при температуре 900-1000 о

Fe + Fe 2 O 3 → 3 FeO

Fe + Fe 3 O 4 → 4 FeO

В природе оксид двухвалентного железа существует как минерал вюстит.

В промышленности применяется при выплавке чугуна в домнах, в процессе чернения (воронения) стали. Входит он в состав красителей и керамики.

Оксид железа (III )


Химическая формула Fe 2 O 3 . Это соединение трёхвалентного железа с кислородом. Представляет собой порошок красно-коричневого цвета. В природе встречается как минерал гематит.

Fe 2 O 3 имеет и другие названия: окись железа, железный сурик, крокус, пигмент красный 101, пищевой краситель E172 .

В реакцию с водой не вступает. Может взаимодействовать как с кислотами, так и со щелочами.

Fe 2 O 3 + 6HCl → 2 FeCl 3 + 3H 2 O

Fe 2 O 3 + 2NaOH → 2NaFeO 2 + H 2 O

Оксид железа (III) применяют для окраски строительных материалов: кирпича, цемента, керамики, бетона, тротуарной плитки, линолеума. Добавляют его в качестве красителя в краски и эмали, в полиграфические краски. В качестве катализатора оксид железа используется в производстве аммиака. В пищевой промышленности он известен как Е172.

Оксид железа (II, III )


Химическая формула Fe 3 O 4 . Эту формулу можно написать и по-другому: FeO Fe 2 O 3 .

В природе встречается как минерал магнетит, или магнитный железняк. Он является хорошим проводником электрического тока и обладает магнитными свойствами. Образуется при горении железа и при действии перегретого пара на железо.

3Fe + 2 O 2 → Fe 3 O 4

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Нагревание при температуре 1538 о С приводит к его распаду

2Fe 3 O 4 → 6FeO + O 2

Вступает в реакцию с кислотами

Fe 3 O 4 + 8HCl → FeCl 2 + 2FeCl 3 + 4H 2 O

Fe 3 O 4 + 10HNO 3 → 3Fe(NO 3) 3 + NO 2 + 5H 2 O

Со щелочами реагирует при сплавлении

Fe 3 O 4 + 14NaOH → Na 3 FeO 3 + 2Na 5 FeO 4 + 7H 2 O

Вступает в реакцию с кислородом воздуха

4 Fe 3 O 4 + O 2 → 6Fe 2 O 3

Восстановление происходит при реакции с водородом и монооксидом углерода

Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O

Fe 3 O 4 + 4CO → 3Fe +4CO 2

Магнитные наночастицы оксида Fe 3 O 4 нашли применение в магнитно-резонансной томографии. Они же используются в производстве магнитных носителей. Оксид железа Fe 3 O 4 входит в состав красок, которые производятся специально для военных кораблей, подводных лодок и другой техники. Из плавленного магнетита изготавливают электроды для некоторых электрохимических процессов.

Оксид железа(III)

ТУ 6-09-1404-76

Fe 2 O 3

Оксид железа(III) - сложное неорганическое вещество, соединение железа и кислорода с химической формулой Fe 2 O 3 .

Оксид железа(III) - амфотерный оксид с большим преобладанием основных свойств. Красно-коричневого цвета. Термически устойчив к высоким температурам. Образуется при сгорании железа на воздухе. Не реагирует с водой. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды - шпинели.

В природе встречается как широко распространённый минерал гематит, примеси которого обусловливают красноватую окраску латерита, краснозёмов, а также поверхности Марса; другая кристаллическая модификация встречается как минерал маггемит.

Окись железа Fe 2 O 3 представляет собой кристаллы от красно-коричневого до черно-фиолетового цвета. Химикат термически устойчив. Нет реакции с водой. Медленная реакция с щелочами и кислотами.

Окись железа Fe 2 O 3 применяют в качестве сырья производства чугуна в доменном техпроцессе. Этот химикат является катализатором в техпроцессе изготовления аммиака. Он входит в керамику в качестве одного из компонентов, его применяют при изготовлении минеральных красок и цветных цементов. Окись железа Fe2O3 эффективна при термической сварке стальных элементов конструкций. С этим веществом связана запись звука и изображения на магнитных носителях. Fe2O3 является качественным полирующим средством для полировки стальных и стеклянных деталей.

В железном сурике является главной компонентой. Fe 2 O 3 в пищевой отрасли является достаточно распространенной пищевой добавкой E172.

Физические свойства

Состояние

твёрдое

Молярная масса

159,69 г/моль

Плотность

5,242 г/см³

Термические свойства

Т. плав.

1566 °C

Т. кип.

1987 °C

Давление пара

0 ± 1 мм рт.ст.

Fe 2 O 3 применяется при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок , при термитной сварке стальных конструкций, как носитель аналоговой и цифровой информации (напр. звука и изображения) на магнитных лентах (ферримагнитный γ -Fe 2 O 3), как полирующее средство (красный крокус) для стали и стекла.

В пищевой промышленности используется в качестве пищевого красителя (E172).

В ракетомоделировании применяется для получения катализированного карамельного топлива, которое имеет скорость горения на 80% выше, чем обычное топливо.

Является основным компонентом железного сурика (колькотара).

В нефтехимической промышленности используется в качестве основного компонента катализатора дегидрирования при синтезе диеновых мономеров .

В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.

Физические свойства

В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.


Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».


При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).


Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.


Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.


Способы получения железа

1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:




Восстановление происходит постепенно, в 3 стадии:


1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2


2) Fe 3 O 4 + СО = 3FeO +СO 2


3) FeO + СО = Fe + СO 2


Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.


2. Очень чистое железо получают одним из способов:


а) разложение пентакарбонила Fe


Fe(CO) 5 = Fe + 5СО


б) восстановление водородом чистого FeO


FeO + Н 2 = Fe + Н 2 O


в) электролиз водных растворов солей Fe +2


FeC 2 O 4 = Fe + 2СO 2

оксалат железа (II)

Химические свойства

Fe - металл средней активности, проявляет общие свойства, характерные для металлов.


Уникальной особенностью является способность к «ржавлению» во влажном воздухе:



В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:


3Fe + 2O 2 = Fe 3 O 4


В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:


3 Fe + 4Н 2 O(г) = 4H 2


Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.

Виды коррозии


Защита железа от коррозии


1. Взаимодействие с галогенами и серой при высокой температуре.

2Fe + 3Cl 2 = 2FeCl 3


2Fe + 3F 2 = 2FeF 3



Fe + I 2 = FeI 2



Образуются соединения, в которых преобладает ионный тип связи.

2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).

Fe + Р = Fe x P y


Fe + C = Fe x C y


Fe + Si = Fe x Si y


Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)

Fe 0 + 2Н + → Fe 2+ + Н 2


Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.


Fe + 2HCl = FeCl 2 + Н 2


Fe + H 2 SO 4 = FeSO 4 + Н 2

4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)

Fe 0 - 3e - → Fe 3+


Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).


В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:


Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O


Очень хорошо растворяется в смеси НСl и HNO 3

5. Отношение к щелочам

В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

6. Взаимодействие с солями менее активных металлов

Fe + CuSO 4 = FeSO 4 + Cu


Fe 0 + Cu 2+ = Fe 2+ + Cu 0

7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)

Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа

Соединения Fe(III)

Fe 2 O 3 - оксид железа (III).

Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».

Способы получения:

1) разложение гидроксида железа (III)


2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O


2) обжиг пирита


4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3


3) разложение нитрата


Химические свойства

Fe 2 O 3 - основный оксид с признаками амфотерности.


I. Основные свойства проявляются в способности реагировать с кислотами:


Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О


Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O


Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O


II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:


Fe 2 О 3 + СаО = Ca(FeО 2) 2


Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O


Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2


III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:


Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2

Fe(OH) 3 - гидроксид железа (III)

Способы получения:

Получают при действии щелочей на растворимые соли Fe 3+ :


FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl


В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.


Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:


4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3


4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3


Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .

Химические свойства

Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:


1) реакции с кислотами протекают легко:



2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:


Fe(OH) 3 + 3КОН = K 3


В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):


2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O

Соли Fe 3+

Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)


б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)

ОКСИД ЖЕЛЕЗА (III)

Применение

Применяется как сырьё при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель аналоговой и цифровой информации (напр. звука и изображения) на магнитных лентах (ферромагнитный?-Fe 2 O 3), как полирующее средство (красный крокус) для стали и стекла.

В пищевой промышленности используется в качестве пищевого красителя (E172).

В ракетомоделизме применяется для получения катализированого карамельного топлива, которое имеет скорость горения на 80% выше, чем обычное топливо.

Является основным компонентом железного сурика (колькотара).

Колькотар

Колькотар -- коричневая минеральная краска. Другие названия: парижская или английская красная краска, caput mortuum vitrioli, крокус, железный сурик; в алхимии -- красный лев.

По составу колькотар представляет более или менее чистую безводную окись железа. Хотя безводная окись железа и встречается в природе в очень больших количествах (красный железняк, железный блеск), но ценные сорта этой краски вырабатываются искусственно или получаются как побочный продукт при добывании нордгаузенской кислоты из железного купороса, а также при прокаливании основных серножелезных солей, выделяющихся из раствора при приготовлении железного купороса из купоросного камня.

Получение и синтез

1. Fe2O3 образуется при прокаливании на воздухе всех гидратов и кислородных соединений железа, а также Fe(NO3)3 и FeSO4. Так, например, прокаливают в течение 2 час. на полном пламени бунзеновской горелки Fe(OH)3, полученный по методу Г. Гюттига и Г. Гарсайда.

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

2. По указанию Д. Н. Финкельштейна 100 г Fe(NO3)3 * 9H2O нагревают в большом фарфоровом тигле на электрической плитке. Вначале соль спокойно плавится, образуя бурую жидкость, постепенно испаряющуюся. При 121° жидкость начинает кипеть, выделяя постоянно кипящую 68%-ную HNO3.

Постепенно жидкость начинает загустевать и необходимо частое перемешивание, чтобы избежать толчков и разбрызгивания. Начиная со 130°, непрерывно перемешивают жидкость фарфоровым шпателем, причем она загустевает, образуя пасту (без перемешивания жидкость внезапно затвердевает в сплошную массу). При 132° паста сразу рассыпается в порошок, продолжая выделять пары HNO 3 .

Не переставая перемешивать, продолжают нагревание до полного высушивания; весь процесс занимает 20--25 мин. Сухую массу растирают, переносят в тигель и прокаливают в муфеле при 600--700° в течение 8--10 час. При достаточной чистоте исходного нитрата железа полученный продукт отвечает квалификации х. ч. Выход 95--98% теоретического, т. е. около 19 г.

3. Для приготовления чистого препарата к нагретому до кипения раствору закисной соли железа прибавляют вычисленное количество горячего раствора щавелевой кислоты, причем выпадает закисное щавелевокислое железо. Его отфильтровывают, тщательно промывают водой, высушивают и прокаливают при доступе воздуха, непрерывно перемешивая. Выход 90--93% теоретического. Получаемый препарат содержит 99,79--99,96% Fe 2 O 3 .

4. В фарфоровый котелок емкостью 4 л, снабженный крышкой, помещают раствор 500 г Fe(NO 3) 3 * 9Н 2 О в 2 л воды. Через трубку, проходящую до дна котелка, пропускают не слишком сильный ток NH 3 , промытого щелочью и водой. Время от времени перемешивают жидкость газоотводящей трубкой.

По окончании осаждения жидкости дают отстояться, раствор декантируют и промывают осадок горячей водой до удаления NO 3 в промывных водах. Отмытый Fe(OH) 3 просушивают в фарфоровых чашках, после чего прокаливают в течение 5--6 час. при 550--600°. Выход 96 г (96--97% теоретического).

5. При получении Fe 2 O 3 , служащего сырьем для приготовления Fe высокой чистоты, исходный нитрат железа должен быть исключительно чист. Путем многократной перекристаллизации Fe(NO 3) 3 * 9Н 2 О Кливс и Томпсон получили препарат, содержащий всего 0,005% Si и менее 0,001% других примесей.

6. По Брандту целесообразнее всего исходить из химически чистого железа. Последнее растворяют в НСl, раствор при нагревании обрабатывают сероводородом, фильтруют и в фильтрате двухвалентное железо окисляют в трехвалентное кипячением с небольшим количеством HNO 3 . Смесь дважды выпаривают с концентрированной HCl и, растворив остаток в избытке разбавленной НСl, несколько раз взбалтывают раствор с эфиром в большой делительной воронке.

Если исходный материал содержал Со, то содержимому воронки дают отстояться, спускают через кран нижний (водный) слой и к оставшейся в воронке эфирной вытяжке прибавляют часть по объему смеси, полученной встряхиванием НСl (уд. в. 1,104) с эфиром. Сильно встряхивают, снова сливают нижний слой и операцию повторяют.

Очищенную эфирную вытяжку фильтруют, эфир отгоняют (или просто удаляют нагреванием на водяной бане), и оставшийся раствор FeCl 3 несколько раз выпаривают с НNО 3 . Последнее выпаривание ведут с добавлением NH 4 NO 3 .

Выпаривание целесообразно проводить в плоской фарфоровой чашке.

После выпаривания остается хрупкая соляная масса, легко отделяющаяся от чашки. Ее истирают в ступке и порциями по 40--50 г умеренно прокаливают в платиновой чашке. Остаток несколько раз смешивают с сухим углекислым аммонием и вновь прокаливают при слабом красном калении, часто перемешивая.

Эту операцию повторяют до приблизительно постоянного веса (точно постоянный вес не может быть достигнут, так как незначительное количество Fe 2 O 3 уносится парами (NH 4) 2 СО 3).

железо металл оксид минерал

Понравилась статья? Поделиться с друзьями: